Uncovering the Truth About Time Travel



Time Travel is not that far fetched anymore, Now that studies into Quantum Physics has emerged. We are discovering that Time and Dimension Jumping is in our Grasp. Soon we will all be taking our vacations in a different time and space, instead of a different location. But has this already been taking Place? There has been many clues to this phenomenon actually already happening right under our noses. Even Military and civilian workers of Secret Programs have come forward claiming the Secret Space Programs have had this technology for many decades. But, The Secrets run deep and we may never know everything they have done Under the Cover of "Top Secret". Here is what we "are" being told about time travel...


 


United States Patients

Patient for A Practical Time Machine Using Dynamic Efficient Virtual And Real Robots




A method for time travel, which allows an object or a group of objects to travel into the past or the future, as well as a method to cut objects from the past or future and paste them to the current environment. The present invention, called the practical time machine, requires teams of super intelligent robots that work together in the virtual world and the real world to generate a perfect timeline of planet Earth. The timeline of Earth records all objects, events and actions every fraction of a nanosecond for the past or the future. A time traveler will set a time travel date; the time traveler can be one object or a group of objects. Next, atom manipulators are scattered throughout the Earth to change objects in our current environment based on the timeline; and incrementally, change the current environment until the time travel date. Each atom manipulator is intelligent and manipulates the current environment as well as generating ghost machines to manipulate the current environment. Also, components of the practical time machine can be used to create technology for the purpose of: building cars, planes and rockets that travel at the speed of light, building intelligent weapons, creating physical objects from thin air, using a chamber to manipulate objects, building force fields, making objects invisible, building super powerful lasers, building anti-gravity machines, creating strong metals and alloys, creating the smallest computer chips, collecting energy without any solar panels or wind turbines, making physical DNA, manipulating existing DNA, making single cell organisms, controlling the software and hardware of computers and servers without an internet connection, and manipulating any object in the world.

US Patient number

US20090234788A1

Google Patients https://patents.google.com/patent/US20090234788A1/en


Patient for A Method of gravity distortion and time displacement



A method for employing sinusoidal oscillations of electrical bombardment on the surface of one Kerr type singularity in close proximity to a second Kerr type singularity in such a method to take advantage of the Lense-Thirring effect, to simulate the effect of two point masses on nearly radial orbits in a 2+1 dimensional anti-de Sitter space resulting in creation of circular timelike geodesics conforming to the van Stockum under the Van Den Broeck modification of the Alcubierre geometry (Van Den Broeck 1999) permitting topology change from one spacelike boundary to the other in accordance with Geroch's theorem (Geroch 1967) which results in a method for the formation of G{umlaut over ( )}odel-type geodesically complete spacetime envelopes complete with closed timelike curves.

US Patient number

US20060073976A1

Google Patients https://patents.google.com/patent/US20060073976A1/en


 



Quantum Mechanics of Time Travel.

Until recently, most studies on time travel are based upon classical general relativity. Coming up with a quantum version of time travel requires us to figure out the time evolution equations for density states in the presence of closed timelike curves (CTC).

Novikov[1] had conjectured that once quantum mechanics is taken into account, self-consistent solutions always exist for all time machine configurations, and initial conditions. However, it has been noted such solutions are not unique in general, in violation of determinism, unitarity and linearity.

The application of self-consistency to quantum mechanical time machines has taken two main routes. Novikov's rule applied to the density matrix itself gives the Deutsch prescription. Applied instead to the state vector, the same rule gives nonunitary physics with a dual description in terms of post-selection.


 

Physicists Have Reversed Time on The Smallest Scale by Using a Quantum Computer



It's easy to take time's arrow for granted - but the gears of physics actually work just as smoothly in reverse. Maybe that time machine is possible after all?

An experiment earlier this year shows just how much wiggle room we can expect when it comes to distinguishing the past from the future, at least on a quantum scale. It might not allow us to relive the 1960s, but it could help us better understand why not.


Researchers from Russia and the US teamed up to find a way to break, or at least bend, one of physics' most fundamental laws on energy.

The second law of thermodynamics is less a hard rule and more of a guiding principle for the Universe. It says hot things get colder over time as energy transforms and spreads out from areas where it's most intense.

It's a principle that explains why your coffee won't stay hot in a cold room, why it's easier to scramble an egg than unscramble it, and why nobody will ever let you patent a perpetual motion machine.

It's also the closest we can get to a rule that tells us why we can remember what we had for dinner last night, but have no memory of next Christmas.

"That law is closely related to the notion of the arrow of time that posits the one-way direction of time from the past to the future," says quantum physicist Gordey Lesovik from the Moscow Institute of Physics and Technology.

Virtually every other rule in physics can be flipped and still make sense. For example, you could zoom in on a game of pool, and a single collision between any two balls won't look weird if you happened to see it in reverse.

On the other hand, if you watched balls roll out of pockets and reform the starting pyramid, it would be a sobering experience. That's the second law at work for you.

On the macro scale of omelettes and games of pool, we shouldn't expect a lot of give in the laws of thermodynamics. But as we focus in on the tiny gears of reality - in this case, solitary electrons - loopholes appear.

Electrons aren't like tiny billiard balls, they're more akin to information that occupies a space. Their details are defined by something called the Schrödinger equation, which represents the possibilities of an electron's characteristics as a wave of chance.

If this is a bit confusing, let's go back to imagining a game of pool, but this time the lights are off. You start with the information – a cue ball – in your hand, and then send it rolling across the table.

The Schrödinger equation tells you that ball is somewhere on the pool table moving around at a certain speed. In quantum terms, the ball is everywhere at a bunch of speeds … some just more likely than others.

You can stick your hand out and grab it to pinpoint its location, but now you're not sure of how fast it was going. You could also gently brush your finger against it and confidently know its velocity, but where it went... who knows?

There's one other trick you could use, though. A split second after you send that ball rolling, you can be fairly sure it's still near your hand moving at a high rate.

In one sense, the Schrödinger equation predicts the same thing for quantum particles. Over time, the possibilities of a particle's positions and velocities expands.

"However, Schrödinger's equation is reversible," says materials scientist Valerii Vinokur from the Argonne National Laboratory in the US.

"Mathematically, it means that under a certain transformation called complex conjugation, the equation will describe a 'smeared' electron localising back into a small region of space over the same time period."

It's as if your cue ball was no longer spreading out in a wave of infinite possible positions across the dark table, but rewinding back into your hand.

In theory, there's nothing stopping it from occurring spontaneously. You'd need to stare at 10 billion electron-sized pool tables every second and the lifetime of our Universe to see it happen once, though.

Rather than patiently wait around and watch funding trickle away, the team used the undetermined states of particles in a quantum computer as their pool ball, and some clever manipulation of the computer as their 'time machine'.

Each of these states, or qubits, was arranged into a simple state which corresponded to a hand holding the ball. Once the quantum computer was set into action, these states rolled out into a range of possibilities.

By tweaking certain conditions in the computer's setup, those possibilities were confined in a way that effectively rewound the Schrödinger equation deliberately.

To test this, the team launched the set-up again, as if kicking a pool table and watching the scattered balls rearrange into the initial pyramid shape. In about 85 percent of trials based on just two qubits, this is exactly what happened.

On a practical level, the algorithms they used to manipulate the Schrödinger equation into rewinding in this way could help improve the accuracy of quantum computers.

It's not the first time this team has given the second law of thermodynamics a good shake. A couple of years ago they entangled some particles and managed to heat and cool them in such a way they effectively behaved like a perpetual motion machine.

Finding ways to push the limits of such physical laws on the quantum scale just might help us better understand why the Universe 'flows' like it does.

This research was published in Scientific Reports.


 

Time Travel Is Mathematically Possible With New Mind-Boggling Model



Many have dreamed of figuring out how to travel in time—and dismissed it as impossible. Now, researchers have proposed a mathematical model that makes time travel possible, using concepts of Einstein's theory of general relativity coupled with the hypothesis that time is not a separate dimension.

Traditionally, we think of the universe as being made up of three spatial dimensions, and a fourth dimension representing time. But mathematician Ben Tippett at the University of British Columbia, Canada, says this is wrong. He believes time should not be separated from other three spatial dimensions—instead all four run together, simultaneously.

Working with David Tsang, an astrophysicist from the University of Maryland, he has worked out a way to use this principle to make time travel possible. Their findings have now been published in the journal Classical and Quantum Gravity.

"People think of time travel as something fictional," Tippett said in a statement. "And we tend to think it's not possible because we don't actually do it. But, mathematically, it is possible."

In an email interview with Newsweek , he explained how the time machine—Traversable Acausal Retrograde Domain in Spacetime, or TARDIS—would work. In general relativity, the curvature of spacetime causes gravity by exerting a force on objects passing them. These curves cause planets to orbit stars—if spacetime was not curved, all the planets and stars would travel along straight lines. So if spacetime is curved, and we run time along it simultaneously, then theoretically the bend can be turned into a loop, making time travel possible.

"Since the 1950s, there have been many other proposals for spacetimes which allow people to travel backward in time," he says. "My work was to model a 'time machine,' where passengers inside of a box of limited size could travel along a circle through space and time, returning to their own pasts.

"The shape of spacetime was used to turn the direction of the arrow of time inside of the box in space and time. I then used Einstein's theory to analyze this strange spacetime, and determine what would be required to build such a thing."

Tippet and Tsang's time machine model creates a spacetime curvature that is bent into a circle. Anything—a box with someone inside, for example—moving along this curvature would be anchored to this version of time and would move backward. Someone watching from the outside would be able to see events running in reverse.

"It is because time and space are attached together that the time machine to behave in this way," Tippet says. "In the simplest way, the orientation of the arrow of time inside the box is not anchored to the orientation of the arrow of time outside the box.

"Initially, they are pointing in the same direction; and then the direction of the arrow of time in the box turns so that 'forward in time' inside the box corresponds to the 'sideways' spatial direction outside of the box. And then the arrow of time inside the box continues to rotate in space and time until it returns to its original orientation."

If you were inside the time machine making breakfast, the hands of your wristwatch would be moving forward and you would feel a "persistent acceleration," Tippet explains. But if you were to look outside, things would get very strange.

"You would see two strange things: First you would see a second version of you standing in an identical copy of your box, but timeshifted (so, at a previous time), and also, time would be running in reverse. Your doppelgänger would be un-frying eggs, and putting them back in their shells; and un-stirring the cream from their coffee. The hands on the clocktower outside would behave erratically, first moving clockwise, then counterclockwise, according to which part of the bubble's journey you were currently sitting through.

"The fun thing is that the outside viewer would see two version of you: One where time was moving forward in time (cracking and frying eggs) and the other moving backward in time (un-stirring the cream in their coffee)."

But will such a machine ever exist? Tippet says no. "Our paper included a careful analysis of this geometry, and the problems it would have in being built," he says. "Generally speaking, backward time travel usually causes singularities (places where there are holes in the universe) or instabilities which would cause them to collapse into a black hole if they get poked the wrong way. So unfortunately, I don't foresee this as being feasible."

Marika Taylor, professor of theoretical physics at the University of Southampton, commented on the study. She tells Newsweek over email: "Mathematical models for time travel all use the idea of creating shortcuts in a spacetime. In the study the authors explore a version of this idea, bubbles in a spacetime.

"However the main problems in all these models are that quantum effects [effects that cannot be explained by classical physics] often destroy the spacetime shortcuts and that exotic forms of matter are required to create the shortcuts."

Exotic matter refers to a class of material yet to be discovered. Unlike ordinary matter, exotic matter causes space and time to expand and gravity to be repulsive. In the study, the researchers note that time can only be bent into a circle by using exotic matter.

(Source)


 

Evidence that Time Travel is Happening All Around Us

Here are some old television footage and Photographs that show possible time travelers.

An old woman using mobile phone in a short clip from the DVD extras of Charlie Chaplin's film The Circus, 1928, spotted only in 2010 by filmmaker George Clark


The man often called Time Traveling Hipster from the reopening ceremony of South Forks Bridge in Gold Bridge, British Columbia, Canada, 1941




 

The story of Håkan Nordkvist, who just met with an older version of himself, 2006

Nordkvist slipped through a wormhole in his kitchen and met an older man who had the same tattoo as Håkan. He just knew that no one's going to believe this — so he filmed the encounter.


 

How to Build a Time Machine.


 

10 Mind Bending Theories About Time Travel



 

FULL DISCLOSURE TIME TRAVEL

Corey Goode 1st Interview Part I Secret Space Program, ET's & MILAB's "20 and Back Space Program"


 

Is Time Travel Possible? | Unveiled



 

The physics of time travel, by Dr Pieter Kok

The physics of time travel explained with quantum mechanics, by theoretical physicist Dr Pieter Kok.



 

Kip Thorne - Is Time Travel Possible?

Some scientists take time travel seriously. Should you? What does time travel reveal about the nature of space and time? What about the laws of physics under extreme conditions? And don't forget those 'Grandfather Paradoxes', where a time traveler kills his own ancestor.



 

Join Us on our FB Page for All of our Posts:


Universal Lighthouse~ https://www.facebook.com/ULight1123/


Disclaimer: Universal Lighthouse offers our own Writings Plus, other information that is found throughout the Internet,

We do try and find the original source for this information. However, the opinions, views, statements,

and/or information we present are not necessarily the beliefs of Universal Lighthouse.

Please use discernment with all information given.

We offer this information free for Research and Study Purposes. Not all information may be a current event, but is to be used as a Library of information.

It is our goal to raise the consciousness of humanity through knowledge, truth, and love.

We are shining the light on the ALL this is the ONE.




Check out our WebSite for All of our personal Posts: http://universallighthouse.com

Join Us on Facebook for Amazing Discoveries and Universal Enlightenment:

FB Pages:

Universal Lighthouse~ https://www.facebook.com/ULight1123/

Goddess Heart~ https://www.facebook.com/GoddessHeartteachings

Twin Flame ~ Ancient Secrets~ https://www.facebook.com/Twin-Flames-Ancient-Secrets-321594358686155

FB Groups:

Cosmic Light Tribe~ https://www.facebook.com/groups/437103100063433/

Unconditional Unity~ https://www.facebook.com/groups/UnconditionalUnity


Connect with us on Twitter: Universal Lighthouse: https://twitter.com/ULight1123


Follow us on Youtube: Universal Lighthouse